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Abstract

In this article, we studied the effects of variable viscosity and variable thermal conductivity on heat transfer from moving surfaces in a
micropolar fluid through a porous medium with radiation. The fluid viscosity is assumed to vary as an inverse linear function of temperature
and the thermal conductivity is assumed to vary as a linear function of temperature. The governing fundamental equations are approximatec
by a system of nonlinear ordinary differential equations and are solved numerically by using Chebyshev finite difference method (ChFD).
Numerical solutions are obtained for different values of variable viscosity, variable thermal conductivity, porous medium, radiation, velocity
ratio and micropolar parameters. Two cases are considered, one corresponding to a plane surface moving in parallel with the free stream an
the other, a surface moving in the opposite direction to the free stream. The numerical results show that, variable viscosity, variable thermal
conductivity, radiation and the pmeability have significarnnfluences on the velocity, the angulalaety and temperature profiles, shear
stress, couple stress and Nusselt number in the above two cases.

0 2004 Elsevier SAS. All rights reserved.
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1. Introduction erating temperature, radiatieeffect can be quite significant
(see [5—7]). The porous media heat transfer problems have
Most of the existing analytical studies for this problem several practical engineegrapplications such as geother-
are based on the constant physical properties of the ambientnal systems, crude oil extraction, ground water pollution
fluid [1-3]. However, it is know that these properties may and another many practical applications such as in biome-
change with temperature [4]oTaccurately predict the flow  chanical problems, e.g., blood, flow in the pulmonary alve-
and heat transfer rates, it is necessary to take into accounblar sheet and in filtration transpiration cooling. The study
this variation of viscosity and thermal conductivity. The of the boundary layer behaviour on continuous surfaces is
effect of radiation on hydrodynamic flow and heat transfer important because the analysis of such flows finds applica-
problems have become more important industrially. Many tions in different areas such as the cooling of a metallic plate
processes in engineering areacur at high temperatures in a cooling bath, the boundary layer along material han-
and acknowledge radiation heat transfer becomes verydling conveyers and the boundary layer along a liquid film
important for the design of pertinent equipment. in condensation processes. Erigen [8] introduced the concept
Nuclear power plants, gas turbines and the various of a micropolar fluid in an attempt to explain the behavior of
propulsion devices for aircraft, missiles, satellites and spacea certain fluid containing polymeric additives and naturally
vehicles are examples of such engineering areas. At high op-occurring fluids such as the phenomenon of the flow of col-
loidal fluids, liquid crystals, polymeric suspensions, animal
msponding author. blood, etc._ . . . .
E-mail addresseelbarbary@hotmail.com (E.M.E. Elbarbary). In stu_dylng th_e motion of S_leCh afluid, the n_on“nea_”ty (_)f
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Nomenclature

u,v velocity components.................. -gnt h heat transfer coefficient ......... W2.K-1

T temperature ............... i K Nu, local Nusselt number

N angular velocity M,  wallcouplestress...............c...coo... N
K vortex viscosity j microinertia per unit mass................ 2m
kr thermal conductivity ............ wn—1.K-1

N thermal conductivity parameter Greek letters

qr heat flux R EERERE W_z 0 dens|ty ............................. k-g*3

k* perm_e_ab|I|ty of the porous medium. .. T m dynamic ViSCoSity . .. ............ kgL 1

cr specific heat at constant pressure -kgJ=K v kinematic Viscosity ................ ™51
fg dimensionless similarity variables Spin viscosit

Re Reynolds number v P y .

Pr Prandtl number n transformed similarity variable

kp permeability parameter A micropolar parameter

F radiation parameter 0, variable viscosity parameter

r relative difference of temperature Y1 velocity ratio

C local friction coefficient Tw wallshearstress.......................... N

perturbation and numerical methods. Hydrodynamic flows where uo, and T, are the fluid free stream dynamic

of a viscous and incompressible fluid have been studied un-viscosity and the fluid free-stream temperatur@and7, are

der different physical conditions with variable fluid proper- constant and their values depend on the reference state and

ties by Hassanien [4], Seddeek [9] and Aboeldahab and Elthermal property of the fluid, i.es. In general,A > 0 for

Gendy [10]. In many practical engineering systems, both the fluids such as liquids and < 0 for gases. Also, we assume

plane surface and the ambient fluid are moving in parallel.  that, the fluid thermal conductivity,, is assumed to vary as
Hence, the aim of the present work is to study the effects a linear function of temperature in the form [11]

of variable viscosity, variable thermal conductivity and ra-

diation on heat transfer from awing surfaces in a steady, ks = koo(1+a(T — Tw))

incompressible, micropolar fluid through a porous medium.

We have reduced the two-dimensional continuity, momen-

tum, angular momentum and energy equations to a sys-

tem of nonlinear ordinary differential equations which are . ) . . :

solved numerically by using ChFD method. The effects of such as lubrication oils. This form can be rewritten in the

variable viscosity, variable thermal conductivity, radiation, form:

porous medium and micropolar.parameters on thel flow and ki = koo(1+ 56)

heat transfer have been shown in tables and graphically.

wherek is the fluid free stream thermal conductivity and
is a constant depending on the nature of the fluid. In general,
a > 0 for fluids such as water and air, white< O for fluids

whereS = a(Ty, — Two), is the thermal conductivity parame-

ter and7,, is the value of the plate temperature. The range of
2. Problem formulation variation ofS can be taken as follows, for airQ S < 6, for

water 0< § < 0.12 and for lubrication 0ils-0.1 < § < 0.

Consider a plane surface moving at a constant velocity The fluid is considered to be a gray, absorbing emitting radi-

uy in parallel or in opposite direction to a free stream ation but non-scattering medium and the Rosseland approx-
of a steady, incompressible, micropolar and electrically imation is used to describe the radiative heat flux in the en-
CondUCting fluid of uniform VelOCitytoo. Either the surface ergy equation_ The radiative heat flux in thedirection is
velocity or the free stream velocity my be zero but not considered negligible in comparison to thalirection.
both at the same time. We assume that the fluid properties  The radiative heat flux;,. is employed according to

are isotropic and constant, except for the fluid viscogity,  Rosseland approximation [6], such that
which is assumed to vary as an inverse linear function of

temperatureT, in the form [10] . _40* a_T4
11 1 =73 oy
S =—"(148(T-Tx)) or ==A(T-T)
M Moo M whereo* and ¢ are the Stefan—Boltzmann constant and
where mean absorption coefficient, respectively.
Under the usual boundary layer approximation, the gov-
= M_ and T, =Tw — 5 erning equation for this problem can be written as follows
o
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The equation of continuity: f@=0 flO==xn  g0=

du v 60 =1, (10)
—+—= 1) f'(00) = (1= y1), g(c0)=0, and

ax  dy 6(c0) =0

The equation of momentum:

where the primes denote differentiation with respechto

9 v 139 d K dN — X — X2 A K i
M_MJFU_U:__((MJFK)_M)JF___L*M @ r= andB_*j(ReﬁR%). A = X is the micropolar
dx dy pdy dy pdy k parameterk, = ]’F—B is the dimensionless porous medium
The equation of angular momentum: parameter?, = 42 is the Prandtl numbe#, = 7==7= is
AN  ON PN K 3 _ _kyx -
ua_+ - _Y = <2N+ua_”> 3) the variable viscosity parametét.—= 2013 is the radlatlon
. y oy Jp Y parameter; = T“'T is the relative difference between the
The equation of energy: temperature of the surface and the temperature far away from
9T T 1 9 9T 1 dg, . the surfacey; = -4 — = 1+R%/R% is the velocity ratio.
“ax Tv By pﬂ,@ kf@ pcp 3y 4) The wall shear stress is related i’ (0)| by the relation
subject to the boundary conditions o ((pv L K)‘ du ‘ L K|N|)
= -
U= tuy, v=0, N =0, dy y=0
T=T, aty=0, (5) v\ 2
U=t, N=0, T=Tx, asy— oo = "(;) (1+ 4)(Ray + Rex)”*| (0)] (11)
where, x a.nd y are the coordinate_ directions, v a”q N To express the wall shear stress nondimensionally, we define
are the fluid velocity components in theandy directions two types of the local friction coefficients as:
and the component of angular velocity, respectivély.p 5 5
andv are vortex viscosity, the fluid density and kinematic ¢, = T;’ and C, Tl;’ (12)
viscosity, respectivelyj, k*, y andcp are the microinertia Pz puy,
per unit mass, the permeability of the porous medium, the A combination of Egs. (11) and (12) gives
spin gradient viscosity and specific heat at constant pressure, /2 321 n
respectively. CooREL =21+ A)(1—y)~% |f"(0)| and
The boundary conditiom = +u,, in Eq. (5) represents Cu Rq}/2_2(1+A)y’3/2|f”(0)|
the case of a plane surface moving in parallel to the free
stream, whileu = —u,, represents the case of a surface The wall couple stress is relatedg(0) by the relation
moving in the opposite direction. ON .y
By using the following similarity transformations [2]: My = <7’ @) o V;(Rev +Rex) |g (O)|
y
n= [ M, 0(n) = T TOOOO, The local heat flux may be written by Fourier’s law as
N =5 (Re, + Reoo)?*/zg(n), T wy +u
¥ (6) =—ki|—) =—kp(Tw—Tx)y ——06'(0
u= Uy +ux)f (), Guw(x) f ( dy >y:0 §Tw = Too) XV ©
v =—gv,/ el xSL2( £ () — 0 f () The local heat transfer coefficient is given by
where, the Reynolds numbers are hix) = Guw(x)
Re, = XUy and Re,, = XUoo (Tw — Too) .
v and the local Nusselt numbédy, = % can be obtained
Substituting Eq. (6) into Eqgs. (1)—(5) produces the fol- from the numerical results by the relation
lowing similarity equations and boundary conditions NU
1 —173 =—0'(0)
(1+A)f///_ <9 9 >9/f//+Agl+ Eff” Ré@
1 !
- Ef =0, 7 3. Themethod of solution
1
rg" —BA(2g+ f") + —(f’g +g'f)=0, (8) Chebyshev polynomials are used widely in numerical
3F computations. Chebyshev gobmials have proven success-
3F0" +3F(1+ SG)(Q) + _prfg’ fully in the numerical solution of various boundary value

problems [12,13] and in computational fluid dynamics [14—
+4((1+r6)%" +3r(1+r6)%'%) =0 (9) 16]. The present work deals with application of a radically
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new approach to computation of the boundary layer equa-
tions in MHD flows. This approach requires the definition of
a grid points and it is applied to satisfy the differential equa-
tions and the boundary conditioasthese grid points. It can

be regarded as a non-uniform finite difference scheme. The

derivatives of the functiory (x) at a pointx; is linear com-
bination from the values of the functiofi(x) at the Gauss—
Lobatto pointsy; = cos(kT”), wherek=0,1,2,..., L, and
jisaninteger & j < L [17-20].

3.1. Chebyshev finite difference method for derivative
calculation

The derivatives of the functiogf (x) at the pointsc; are
given by [17-20]

L

FPw) =) d fxp) n=123

j=0

where

" 4y>.k L -1 I’l)/*
dj=T1"2 2 o TpTi) kj=0...L

n=

0 [=0
(n+1) odd

O_ix 5 1.,
di=—T"2 D v’ =OL)Tie)
n=0 [=0

(n+l?even
k,j=0,...,L
4y>'k L n—2 -1 1
3
dG=T2 X XL oovnet-®
n= =0 !

0 = i=
(n+1) even (i+I) odd
X Ty (x))Ti(xx) k,j=0,....L

,yf:lforj:l,...,L—l.

3.2. Chebyshev finite difference approximation for the
governing equations

The domain is X n < ne, Wheren is the edge of the

boundary layer. Using the algebraic mapping

2n
f=——

Noo
the domain[0, ] is mapped into the computational do-
main[—1, 1] and Egs. (7)—(10) are transformed into the fol-
lowing equations

(13)

1+ A)f”'(é)—( )9'(§)f”(€)

656 =6,
+ A(’L“’fg’@ i S
2 2 2

1 Noo 2/ .
<7) [ =0

s (14)
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Y,=16,=0.01 kp=2,8=0.5,F=1.0,r=03

— A=00
—— A=0.5
—=— A=1.0

—— A=15

0.8 1

0.6 1

0.4 1

0.2 1

Fig. 1. Effect of micropolar parametet on velocity distributionf’ for
parallel moving surface.

¥;=16,=0.0L,kp=2,S=05,F=1.0,r=03
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0.6 1

0.4 4

0.2 1

0

0 2 4 6 8 10
Fig. 2. Effect of micropolar parametet on temperature distributiof for

parallel moving surface.

2
rg' (&) — BA(Z('%”) g(&) + f”(é))

11w

22

(f'®8@® +8'©f(©)=0 (15)

7 S / 2
3F0" (&) + 3F(71 TS0 ) (0'®)
FA[(1+r0(0))%0" &) +3r (1+r0©)°(6'©®)°]

3F 10 ,
+ P ()06 =0

> > (16)
f(=1)=0, (=1 =12 (£y1),
g(=1) =0, (-1 =1
Q) ="201-y), g(1)=0, and
6(1)=0

Thus by applying the ChFD approximation to Eqgs. (14)—
(16), we obtain the following Chebyshev finite difference
equations
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——A=15
0.04 +
0.02 A
n
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0 T T T g
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-0.07 ; : : : —5
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(b)

Fig. 3. (a) Effect of micropolar parameter on velocity distributiong for
parallel moving surface. (b) Effect of micropolar parameteon velocity
distribution g for reverse moving surface.
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0.8
0.6
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¥=0.
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1,=0.1
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n
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0 2 4 6 H 10
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0.5
Ao A=05,6,-0.01 kp=2,5=05,F=10,r=03
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&=y, =06
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—— 7, =038
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Fig. 4. (a) Effect of the velocity ratig/; on velocity distribution f’ for
parallel moving surface. (b) Effect of the velocity ratiq on velocity
distribution f/ for reverse moving surface.

0.05

B=L0  A=05,6,-001kp=2,8=05F=10,r=03

-0.05 T T T T

Fig. 5. Effect of the velocity ratig/; on angular velocity distributiog for
parallel moving surface.
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T A=0.58, =001 kp=2,S=05F=10,r=03

0
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-y, =05

0.6 - —— =10
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A=0.5,0,=0.01kp=2,8=0.5F=10,r=03
0 T T T T
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(b)

Fig. 6. (a) Effect of the velocity ratigr; on temperature distributiofi for
parallel moving surface. (b) Effect of the velocity ratip on temperature
distribution6 for reverse moving surface.
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L
+4 (L+r0E0)° Y d20E) +3r(1+ro )
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Z d(l)g(%-]

e 7,=1,0,=001,A=05,8=05F=10,r=03
—kp=0.01
——kp=0.02
—=—Lkp=0.05
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0
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0.4
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0s - ——kp=0.3
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Fig. 7. (a) Effect of porous parametgy, on velocity distributionf” for
parallel moving surface. (b) Effect of porous parameigron velocity
distribution £’ for reverse moving surface.
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——kp=0.02
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Fig. 8. Effect of porous parametgy, on velocity distributiong for parallel
moving surface.
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y Te v, =1,6,00,A=0.55=05F=10,r=03 y TG 1,=L,A=05kp=2,8=05F=10,1=03
——kp=0.01
0.8 —a—kp=0.05
—a—kp=0.1
0.6 —e—Lkp=0.2
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n
0 " —
0 2 4 6 8 10
(@
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0 2 4 6 8 10 0 2 4 6 8 10
(b) (b)

Fig. 9. (a) Effect of porous parametey on temperature distributiof for Fig. 10. (a) Effect of viscosity parametér on temperature distribution
parallel moving surface. (b) Effect of porous paramétgion temperature 0 for parallel moving surface. (b) Effect of viscosity paramefiron
distribution6 for reverse moving surface. temperature distributios for reverse moving surface.
The ChFD approximation for the derivative boundary con- L 4o =10, ~0.0LA=05kp=2,F =10, =03

ditions f(—1) = % (£y1), f/(1) = % (1 — y1) are formed
by

0.8 1

L
> dg £ =2y
j=0

0.6
- U
DAy fEN =0y 0]
j=0
The system of nonlinear equations which contaifis-32 02 -
equations for the unknowrf (¢;), i =1,2,3,...,L and
gE), 0(&),i=1,2,3,...,L — 1 is solved by Newton o .
method. 0 2 4 6 8 _>10

Fig. 11. Effect of variable conductivity parameteér on temperature

4. Resultsand discussion distribution6 for parallel moving surface.

To study the behavior of the velocity, the angular velocity a plane surface moving in parallel to the free stream and the
and the temperature profiles, curves are drawn for variouscase of a plane surface moving in the opposite direction to
values of the parameters that describe the flow in the case othe free stream at,, = 10,A = 0.5, B = 0.1 andPr = 0.72.
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ff' y,=1,6,=0.0L,A=0.5kp=2,8=05,r=03 ! Te v,=10,=0.0,A=0.5kp=2,S=0.5,r=03

Fig. 12. Effect of the radiation paramet&ron velocity distributionyf’ for

parallel moving surface. 1
4o
7,=1,8,=0.01,A=05kp=2,5=0.5,r=03 0.8 1
0.04 -
——F=0.1
06 —=—F=0.5
: —a—TF=]
—e—F=2
04l TFI0
0.02 \
F=0.1,1,10 0.2 1
7,=1,0,=0.0,A=0.5kp=2,S=0.5r=03 1»
0 T . . . .
0 2 4 6 8 10
- (b)
0 . . : "
0 5 4 6 3 10 Fig. 14. (a) Effect of the radiation paramet€ron temperature distribution
0 for parallel moving surface. (b) Effect of the radiation parameteon
Fig. 13. Effect of the radiation parametéron velocity distributiong for temperature distributiof for reverse moving surface.

parallel moving surface.

very large so that the resistance of the medium may be ne-
In the first case (the case of a plane surface moving in glected. Fig. 10(a) shows the effect of the variable viscos-
parallel to the free stream): ity parametep, on the temperature distribution. As shown,
Figs. 1-3 show the effect of the micropolar parametesn the temperature is decreasing with increasihgFig. 11
the velocity, the angular velocity, the temperature and distri- shows that, the dimensionless temperature distribution in-
butions, respectively. As shown, the velocity and the angular creases as the thermal conductivity paramétancreases.
velocity are increasing with increasingy, but the tempera-  Also, Figs. 12(a)-14(a) give the effects of the radiation para-
ture decreases as$ increases. Figs. 4(a)—6(a) represent the meterF on the velocity, the angular velocity and the temper-
effect of the velocity ratioy; on the velocity, the angular  ature distributions, respectiwelThis figures indicate that, all
velocity and the temperature distributions, respectively. As of this quantities decrease &sincreases. We notice that,
shown, the velocity near the boundary layer and the angu-the effect of the radiation paramet&ron the temperature
lar velocity are increasing with increasiyg, but the veloc- distribution is weak. Also, in this case Table 1(a) represents
ity far away the boundary layer and the temperature are de-values of| f”(0)|, |g’(0)| and —6'(0) for various values of
creasing with increasing;. Figs. 7(a)—9(a) display results the variable viscosity parametgr, the variable conductivity
for the velocity, the angular velocity and temperature dis- parametefS, the radiation parametdt and the dimension-
tribution, respectively. As shown, the velocities are increas- less porous medium parametey. It is clear that,| /”(0)|
ing with increasing the dimensionless porous medium pa- and |g’(0)| increase and-6'(0) decreases & increases
rameterk, and the temperature decreases gsncreases. whereas| f”(0)| and|g’(0)| decrease and#’(0) increases
The effect of the dimensionless porous medium parameterask, increases.f”(0)|, |¢'(0)| and—6'(0) decrease a$in-
k, becomes smaller &s, increases. Physically, this result creases whereas, they increasé d@acreases, i.e., the vari-
can be achieved when the holes of the porous medium areable viscosity and the permeability have the opposite effect



Table 1(a)

Represents values of” (0)|, |¢’(0)| and—6’(0) in the case of a plane surface moving in parallel to the free stream for various values of the variable viscosity
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parametep,, the variable conductivity paramet§y the radiation parametef and the dimensionless porous medium paramigter

Or N F kp If" () lg'(0)] —0'(0)

0.01 05 1 2 047338229606400317 .@7793950770135853 .18226778895630242
0.05 05 1 2 047930686670165185 .@r807090952312165 .1816960566500151
0.1 0.5 1 2 0487236721620493 .07825582862548498 .18089647145859254
0.01 01 1 2 04764185916993324 .07799009077968118 .18759979138731276
0.01 05 1 2 047338229606400317 .@7793950770135853 .18226778895630242
0.01 1 1 2 04708391400737787 .07789431997967056 .12806556866182123
0.01 2 1 2 04677348004078067 .07783556116907821 .12321672726038124
0.01 5 1 2 046351583137573016 .@r77525635244179 .01732194154267259
0.01 05 01 2 04396193008993214 .07730829272371825 .07786367898585508
0.01 05 05 2 04562858422188947 .07762283844631164 .1052183341681238
0.01 05 1 2 047338229606400317 .@7793950770135853 .18226778895630242
0.01 05 2 2 049711582063455806 .@r83538147142093 .06782884347140253
0.01 05 5 2 05284939897791537 .07886219232255452 .P1405332342869604
0.01 05 1 001 2665164590790144 .08962427991128695 .08851591654858833
0.01 05 1 005 12648431922598353 .08458101323846938 .102751620022091
0.01 05 1 01 0.949489485091824 .08258760215996477 .01039572363162209
0.01 05 1 02 0.7407291863246838 .08088839795924332 .01781697390763912
0.01 05 1 05 0.5778964740399033 .07923700246426744 .»572266381200065
Table 1(b)

Represents values of” (0|, |¢’(0)| and—6’(0) in the case of a plane surface moving in the oppositection to the free stream for various values of the
variable viscosity parametéy., the variable conductivity parametgr the radiation parametét and the dimensionless porous medium paramgter

o S F kp £ 0 1§/ O —6/(0)

0.01 05 1 2 021121222359506647 .@03635970432837052 .@M6738528835901418
0.02 05 1 2 Q006738528835901418 .@3361376170207813 .@M6695365449320134
0.03 05 1 2 0633910478966136 .002773702328285639 .@M65858905023089605
0.01 01 1 2 020893912874189483 .@0364372311020349 .@06963680906851406
0.01 05 1 2 021121222359506647 .@03635970432837052 .@M6738528835901418
0.01 1 1 2 02156213657814442 .0036239967257961103 .D6559797294615555
0.01 2 1 2 022785528680682546 .@035941873668730263 .D6347825389555584
0.01 5 1 2 027645471931706195 .@03482530994884744 .@60414936133905365
0.01 05 1 2 021121222359506647 .@03635970432837052 .@M6738528835901418
0.01 05 2 2 022041882177754815 .@035503391384754265 .D1098154763181411
0.01 05 3 2 Q022978197975697184 .@03519679086656167 .@02945403569790575
0.01 05 4 2 023648800179387763 .@03502336662478776 .@010924830786173678
0.01 05 5 2 02413897724638082 .0034905934205445516 .0D004895275053760917
0.01 05 1 001 2606127326046759 .08037696312328567 .@6089099668832979
0.01 05 1 005 11395869394277838 .057063661658692075 .@82208131150204

0.01 05 1 01 0.7751648485172745 .043730871947144284 .@®001101380355919
0.01 05 1 02 0.5027361222012814 .03024781868543334 .@P9613312541030924
0.01 05 1 05 0.2127718730383549 .015231294262487236 .@M5387674057896438

on the shear stress, couple stress and Nusselt number. Alsdng with increasingy;. Figs. 7(b) and 9(b) display results
the variable conductivity and the radiation have the opposite for the velocity and temperature distributions. As shown,
effect on the same quantities. the velocity is decreasing with increasing the dimensionless
In the second case (the case of a plane surface moving inporous medium parametg,, whereas the temperature in-
the opposite direction to the free stream): creases a8, increases. Fig. 10(b) shows the effect of the
The effect of the micropolar parametaron the angular ve-  variable viscosity parametér on and the temperature dis-
locity distribution is investigated in Fig. 2(b). The angular tribution. As shown, the temperature is decreasing with in-
velocity is decreasing with increasingy Figs. 4(b) and 6(b)  creasing),. Finally, Fig. 14(b) gives the effect of the radia-
represent the effect of the velocity rati@ on the velocity tion parametefF' on the temperature distribution. This figure
and the temperature distributions. As shown, the velocity is indicate that, with increasing the temperature distribution
decreasing witincreasing/; and the temperature is increas- increasing. Also, in this case Table 1(b) represents values of
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Table 2(a)
Represents comparison between the results ofutteaand the results of the Mansour et al. [2] in the case of a plane surface moving in parallelréz the f

streamsneo =8,A=05,B=0.1,Pr=0.7,5=0.0, 6, — o0, kp — 00, F — o0
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A V1 ) —0'(0) g'(0)

15 0.0 (0.18486)0.1859854550 (0.25948)0.2600519545 (~0.09977 — 0.1002543536
15 0.1 (0.15960)0.1575951510 (0.27700)0.2769988251 (—0.08617 — 0.0861692688
15 0.2 (0.12417)0.1241740075 (0.29261)0.2926110385 (—0.06859 — 0.0685907371
15 0.3 (0.08644)0.0864358163 (0.30720)0.3071955606 (—0.04809 — 0.0480917773
15 0.4 (0.04491)0.0449081558 (0.32096)0.3209600529 (—0.0251] — 0.0251115247
15 0.5 (0.0) — 3.97904x 10713 (0.33405)0.3340523047 (0.0) — 1.3742x 10713

15 0.6 (—0.04796 — 0.04796007 (0.34658)0.3465816316 (0.02696)0.026955094391
15 0.7 (—0.09870 — 0.09870078 (0.35863)0.3586313691 (0.05551)0.055511148221
15 0.8 (—0.15199 — 0.15199341 (0.37027)0.3702665906 (0.08546)0.085458951645
15 0.9 (—0.20764 — 0.20764214 (0.38154)0.3815390850 (0.11661)0.116614447718
15 1.0 (—0.26548 — 0.26547756 (0.39249)0.3924906689 (0.14881)0.148812815242
Table 2(b)

Represents comparison between thsults of the author and the results of the Mansour et al. [2] in the case of a surface moving in the opposite tiirectio
the free streamyo, =8,A=05,B8=0.1,Pr=0.7,5§=0.0,6, — 00,k = 00, F — o0

A 71 7" —6'(0) -£'(0)

15 0.00 (0.18486)0.1859854550 (0.25948)0.2600519545 (0.09977)0.1002543536
15 0.05 (0.16840)0.1701452192 (0.23662)0.2376448928 (0.08939)0.0901751251
15 0.10 (0.15016)0.1529534191 (0.21097)0.2129178603 (0.07768)0.0789956193
15 0.15 (0.12923)0.1340084896 (0.18105)0.1850833210 (0.06421)0.0665458940
5.0 0.00 (0.10651)0.1126611656 (0.23306)0.2374666883 (0.10730)0.1137937182
5.0 0.05 (0.09811)0.1055078665 (0.20916)0.2153036247 (0.09578)0.1034199629
5.0 0.10 (0.08913)0.0981517931 (0.18283)0.1916803245 (0.08415)0.0932065188

| £7(0)], |g’(0)| and—6’(0) for various values of the variable  stream. The fluid viscosity is assumed to vary as an inverse
viscosity parametef,, the variable conductivity parameter linear function of temperature and the thermal conductivity
S, the radiation parametef and the dimensionless porous is assumed to vary as a linear function of temperature.
medium parametel),. It is clear that, with increasing., S The governing fundamental equations are approximated by
and F, |g’(0)| and —6'(0) decrease anflf”(0)| increases,  a system of nonlinear ordinary differential equations by
whereas with increasing,, | f”(0)|, [¢'(0)| and—6'(0) de- similarity transformation and are solved numerically by
crease, i.e., the variable viscosity, the variable conductivity ysing Chebyshev finite difference method (ChFD), the shear
and the radiation have the same effect on the shear stressgiress, couple stress and Nusselt number as well as the
couple stress and Nusselt number. details of velocity and temperature fields are presented for
Finally, Table 2(a) represen comparison between the \arious values of parameters of the problem, e.g., variable
results of the author and the results of Mansour et al. [2] \;scosity, variable thermal conductivity, radiation, porous,
in the case of a plane surface moving in parallel t0 the o4ty ratio and micropolar parameters. The numerical
free stream. Table 2(b) reperds comparison between the oq s indicate that (in the first case) the velocity and the
_results of the author and the_ re_sults of Man_sour_ et "?II' [2] angular velocity increase as the porous parameter increases
in the case of a surface moving in the opposite direction to but they decrease as the radiation parameter increases.

the free stream. In these tables, the given number betweenrhe temperature increases also as the variable conductivity

brackets refer to the results of Mansour et al. [2] and . . . o
the given numbers without brackets refer to the present para meter. Increases but .'t _decreases .Wlth permea_mblllty,
values. variable viscosity and radiation increasing. The variable
viscosity and the permeability have the opposite effect on

the shear stress, couple stress and Nusselt number. Also,
the variable conductivity and the radiation have the opposite
effect on the same quantities. Also (in the second case)

This paper studied the effects of variable viscosity, the velocity decreases as the porous parameter increases.
variable thermal conductivity and radiation on heat transfer The temperature increases as the porous and the radiation
from moving surfaces in a micropolar fluid through a porous parameters increase but it deases as the variable viscosity
medium. Two cases are considered, one corresponding to ancreases. The variable viscosity, the variable conductivity
plane surface moving in parallel with the free stream and the and the radiation have the same effect on the shear stress,
other, a surface moving in the opposite direction to the free couple stress and Nusselt number.

5. Conclusions
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