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Abstract

In this article, we studied the effects of variable viscosity and variable thermal conductivity on heat transfer from moving surfa
micropolar fluid through a porous medium with radiation. The fluid viscosity is assumed to vary as an inverse linear function of tem
and the thermal conductivity is assumed to vary as a linear function of temperature. The governing fundamental equations are ap
by a system of nonlinear ordinary differential equations and are solved numerically by using Chebyshev finite difference method
Numerical solutions are obtained for different values of variable viscosity, variable thermal conductivity, porous medium, radiation,
ratio and micropolar parameters. Two cases are considered, one corresponding to a plane surface moving in parallel with the free
the other, a surface moving in the opposite direction to the free stream. The numerical results show that, variable viscosity, variab
conductivity, radiation and the permeability have significant influences on the velocity, the angular velocity and temperature profiles, she
stress, couple stress and Nusselt number in the above two cases.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Most of the existing analytical studies for this proble
are based on the constant physical properties of the am
fluid [1–3]. However, it is know that these properties m
change with temperature [4]. To accurately predict the flow
and heat transfer rates, it is necessary to take into acc
this variation of viscosity and thermal conductivity. T
effect of radiation on hydrodynamic flow and heat trans
problems have become more important industrially. Ma
processes in engineering areasoccur at high temperature
and acknowledge radiation heat transfer becomes
important for the design of pertinent equipment.

Nuclear power plants, gas turbines and the vari
propulsion devices for aircraft, missiles, satellites and sp
vehicles are examples of such engineering areas. At high
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erating temperature, radiation effect can be quite significan
(see [5–7]). The porous media heat transfer problems
several practical engineering applications such as geothe
mal systems, crude oil extraction, ground water pollut
and another many practical applications such as in bio
chanical problems, e.g., blood, flow in the pulmonary al
olar sheet and in filtration transpiration cooling. The stu
of the boundary layer behaviour on continuous surface
important because the analysis of such flows finds app
tions in different areas such as the cooling of a metallic p
in a cooling bath, the boundary layer along material h
dling conveyers and the boundary layer along a liquid fi
in condensation processes. Erigen [8] introduced the con
of a micropolar fluid in an attempt to explain the behavior
a certain fluid containing polymeric additives and natura
occurring fluids such as the phenomenon of the flow of
loidal fluids, liquid crystals, polymeric suspensions, anim
blood, etc.

In studying the motion of such a fluid, the nonlinearity
the basic equation and additional mathematical difficul
associated with it has led several investigators to explore
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Nomenclature

u,v velocity components . . . . . . . . . . . . . . . . . . m·s−1

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
N angular velocity
K vortex viscosity
kf thermal conductivity . . . . . . . . . . . . W·m−1·K−1

S thermal conductivity parameter
qr heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2

k∗ permeability of the porous medium. . . . . . . . m2

cP specific heat at constant pressure kJ·kg−1·K−1

f,g dimensionless similarity variables
Re Reynolds number
Pr Prandtl number
kp permeability parameter
F radiation parameter
r relative difference of temperature
C local friction coefficient

h heat transfer coefficient . . . . . . . . . W·m−2·K−1

Nux local Nusselt number
Mw wall couple stress . . . . . . . . . . . . . . . . . . . . . . . . . N
j microinertia per unit mass . . . . . . . . . . . . . . . . m2

Greek letters

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

µ dynamic viscosity . . . . . . . . . . . . . . . kg·m−1·s−1

ν kinematic viscosity . . . . . . . . . . . . . . . . m−2·s−1

γ spin viscosity
η transformed similarity variable
∆ micropolar parameter
θr variable viscosity parameter
γ1 velocity ratio
τw wall shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . N
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perturbation and numerical methods. Hydrodynamic flo
of a viscous and incompressible fluid have been studied
der different physical conditions with variable fluid prope
ties by Hassanien [4], Seddeek [9] and Aboeldahab an
Gendy [10]. In many practical engineering systems, both
plane surface and the ambient fluid are moving in paralle

Hence, the aim of the present work is to study the effe
of variable viscosity, variable thermal conductivity and
diation on heat transfer from moving surfaces in a stead
incompressible, micropolar fluid through a porous mediu
We have reduced the two-dimensional continuity, mom
tum, angular momentum and energy equations to a
tem of nonlinear ordinary differential equations which a
solved numerically by using ChFD method. The effects
variable viscosity, variable thermal conductivity, radiatio
porous medium and micropolar parameters on the flow
heat transfer have been shown in tables and graphically

2. Problem formulation

Consider a plane surface moving at a constant velo
uw in parallel or in opposite direction to a free strea
of a steady, incompressible, micropolar and electric
conducting fluid of uniform velocityu∞. Either the surface
velocity or the free stream velocity my be zero but n
both at the same time. We assume that the fluid prope
are isotropic and constant, except for the fluid viscosityµ,
which is assumed to vary as an inverse linear function
temperature,T , in the form [10]

1

µ
= 1

µ∞
(
1+ δ(T − T∞)

)
or

1

µ
= A(T − Tr)

where

A = δ
and Tr = T∞ − 1
µ∞ δ
where µ∞ and T∞ are the fluid free stream dynam
viscosity and the fluid free-stream temperature.A andTr are
constant and their values depend on the reference stat
thermal property of the fluid, i.e.,δ. In general,A > 0 for
fluids such as liquids andA < 0 for gases. Also, we assum
that, the fluid thermal conductivity,kf , is assumed to vary a
a linear function of temperature in the form [11]

kf = k∞
(
1+ a(T − T∞)

)
wherek∞ is the fluid free stream thermal conductivity anda

is a constant depending on the nature of the fluid. In gen
a > 0 for fluids such as water and air, whilea < 0 for fluids
such as lubrication oils. This form can be rewritten in
form:

kf = k∞(1+ Sθ)

whereS = a(Tw − T∞), is the thermal conductivity parame
ter andTw is the value of the plate temperature. The rang
variation ofS can be taken as follows, for air 0� S � 6, for
water 0� S � 0.12 and for lubrication oils−0.1 � S � 0.
The fluid is considered to be a gray, absorbing emitting r
ation but non-scattering medium and the Rosseland app
imation is used to describe the radiative heat flux in the
ergy equation. The radiative heat flux in thex-direction is
considered negligible in comparison to they-direction.

The radiative heat fluxqr is employed according t
Rosseland approximation [6], such that

qr = −4σ ∗

3κ

∂T 4

∂y

where σ ∗ and κ are the Stefan–Boltzmann constant a
mean absorption coefficient, respectively.

Under the usual boundary layer approximation, the g
erning equation for this problem can be written as follow
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The equation of continuity:

∂u

∂x
+ ∂v

∂y
= 0 (1)

The equation of momentum:

u
∂u

∂x
+ v

∂v

∂y
= 1

ρ

∂

∂y

(
(µ + K)

∂u

∂y

)
+ K

ρ

∂N

∂y
− ν

k∗ u (2)

The equation of angular momentum:

u
∂N

∂x
+ v

∂N

∂y
= γ

jρ

∂2N

∂y2
− K

jρ

(
2N + u

∂u

∂y

)
(3)

The equation of energy:

u
∂T

∂x
+ v

∂T

∂y
= 1

ρcP

∂

∂y

(
kf

∂T

∂y

)
− 1

ρcP

∂qr

∂y
(4)

subject to the boundary conditions

u = ±uw, v = 0, N = 0,

T = Tw, aty = 0,

u = u∞, N = 0, T = T∞, asy → ∞


 (5)

where,x and y are the coordinate directions,u, v and N

are the fluid velocity components in thex andy directions
and the component of angular velocity, respectively.K, ρ

andv are vortex viscosity, the fluid density and kinema
viscosity, respectively,j , k∗, γ andcP are the microinertia
per unit mass, the permeability of the porous medium,
spin gradient viscosity and specific heat at constant pres
respectively.

The boundary conditionu = +uw in Eq. (5) represent
the case of a plane surface moving in parallel to the
stream, whileu = −uw represents the case of a surfa
moving in the opposite direction.

By using the following similarity transformations [2]:

η = y√
x

√
uw+u∞

ν
, θ(η) = T −T∞

Tw−T∞ ,

N = ν

x2 (Rew + Re∞)3/2g(η),

u = (uw + u∞)f ′(η),

v = −1
2ν

√
uw+u∞

ν
x−1/2

(
f (η) − ηf ′(η)

)




(6)

where, the Reynolds numbers are

Rew = xuw

ν
and Re∞ = xu∞

ν

Substituting Eq. (6) into Eqs. (1)–(5) produces the f
lowing similarity equations and boundary conditions

(1+ ∆)f ′′′ −
(

1

θ − θr

)
θ ′f ′′ + ∆g′ + 1

2
ff ′′

− 1

kp

f ′ = 0, (7)

λg′′ − B∆
(
2g + f ′′) + 1

2

(
f ′g + g′f

) = 0, (8)

3Fθ ′′ + 3F

(
S

1+ Sθ

)(
θ ′)2 + 3F

2
Pr f θ ′

+ 4
(
(1+ rθ)3θ ′′ + 3r(1+ rθ)2θ ′2) = 0 (9)
,

f (0) = 0, f ′(0) = ±γ1, g(0) = 0,

θ(0) = 1,

f ′(∞) = (1− γ1), g(∞) = 0, and
θ(∞) = 0


 (10)

where the primes denote differentiation with respect toη,

λ = γ
ρjν

and B = x2

j (Rew+Re∞)
. ∆ = K

ρν
is the micropolar

parameter.kp = k∗
jB

is the dimensionless porous mediu

parameter.Pr = ρcP ν
kf

is the Prandtl number.θr = Tr−T∞
Tw−T∞ is

the variable viscosity parameter.F = kf κ

4σ ∗T 3∞
is the radiation

parameter,r = Tw−T∞
T∞ is the relative difference between th

temperature of the surface and the temperature far away
the surface.γ1 = uw

uw+u∞ = 1
1+Rew/Re∞ is the velocity ratio.

The wall shear stress is related to|f ′′(0)| by the relation

τw =
(

(ρν + K)

∣∣∣∣∂u

∂y

∣∣∣∣ + K|N |
)

y=0

= ρ

(
ν

x

)2

(1+ ∆)(Rew + Re∞)3/2
∣∣f ′′(0)

∣∣ (11)

To express the wall shear stress nondimensionally, we d
two types of the local friction coefficients as:

C∞ = 2τw

ρu2∞
and Cw

2τw

ρu2
w

(12)

A combination of Eqs. (11) and (12) gives

C∞Re1/2∞ = 2(1+ ∆)(1− γ1)
−3/2

∣∣f ′′(0)
∣∣ and

CwRe1/2
w = 2(1+ ∆)γ

−3/2
1

∣∣f ′′(0)
∣∣

The wall couple stress is related tog′(0) by the relation

Mw =
(

γ
∂N

∂y

)
y=0

= γ
ν

x2 (Rew + Re∞)2
∣∣g′(0)

∣∣
The local heat flux may be written by Fourier’s law as

qw(x) = −kf

(
∂T

∂y

)
y=0

= −kf (Tw − T∞)

√
uw + u∞

xν
θ ′(0)

The local heat transfer coefficient is given by

h(x) = qw(x)

(Tw − T∞)

and the local Nusselt number,Nux = h(x)
kf

, can be obtained
from the numerical results by the relation

Nux

Re1/2∞
= −θ ′(0)

3. The method of solution

Chebyshev polynomials are used widely in numer
computations. Chebyshev polynomials have proven succes
fully in the numerical solution of various boundary val
problems [12,13] and in computational fluid dynamics [1
16]. The present work deals with application of a radica
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new approach to computation of the boundary layer eq
tions in MHD flows. This approach requires the definition
a grid points and it is applied to satisfy the differential eq
tions and the boundary conditionsat these grid points. It ca
be regarded as a non-uniform finite difference scheme.
derivatives of the functionf (x) at a pointxj is linear com-
bination from the values of the functionf (x) at the Gauss–
Lobatto pointsxk = cos( kπ

L
), wherek = 0,1,2, . . . ,L, and

j is an integer 0� j � L [17–20].

3.1. Chebyshev finite difference method for derivative
calculation

The derivatives of the functionf (x) at the pointsxk are
given by [17–20]

f (n)(xk) =
L∑

j=0

d
(n)
k,j f (xj ) n = 1,2,3

where

d
(1)
k,j = 4γ ∗

j

L

L∑
n=0

n−1∑
l=0

(n+l) odd

nγ ∗
n

cl

Tn(xj )Tl(xk) k, j = 0, . . . ,L

d
(2)
k,j = 2γ ∗

j

L

L∑
n=0

n−2∑
l=0

(n+l) even

1

cl

γ ∗
n n(n2 − l2)Tn(xj )Tl(xk)

k, j = 0, . . . ,L

d
(3)
k,j = 4γ ∗

j

L

L∑
n=0

n−2∑
l=0

(n+l) even

l−1∑
i=0

(i+l) odd

1

cicl

γ ∗
n nl(n2 − l2)

× Tn(xj )Ti(xk) k, j = 0, . . . ,L

andγ ∗
0 = γ ∗

L = 1
2, γ ∗

j = 1 for j = 1, . . . ,L − 1.

3.2. Chebyshev finite difference approximation for the
governing equations

The domain is 0� η � η∞, whereη∞ is the edge of the
boundary layer. Using the algebraic mapping

ξ = 2η

η∞
− 1 (13)

the domain[0, η∞] is mapped into the computational d
main[−1,1] and Eqs. (7)–(10) are transformed into the f
lowing equations

(1+ ∆)f ′′′(ξ) −
(

1

θ(ξ) − θr

)
θ ′(ξ)f ′′(ξ)

+ ∆

(
η∞
2

)2

g′(ξ) + 1

2

η∞
2

f (ξ)f ′′(ξ)

− 1

k

(
η∞
2

)2

f ′(ξ) = 0 (14)

p

Fig. 1. Effect of micropolar parameter∆ on velocity distributionf ′ for
parallel moving surface.

Fig. 2. Effect of micropolar parameter∆ on temperature distributionθ for
parallel moving surface.

λg′′(ξ) − B∆

(
2

(
η∞
2

)2

g(ξ) + f ′′(ξ)

)

+ 1

2

η∞
2

(
f ′(ξ)g(ξ) + g′(ξ)f (ξ)

) = 0 (15)

3Fθ ′′(ξ) + 3F

(
S

1+ Sθ(ξ)

)(
θ ′(ξ)

)2

+ 4
[(

1+ rθ(ξ)
)3

θ ′′(ξ) + 3r
(
1+ rθ(ξ)

)2(
θ ′(ξ)

)2]
+ 3F

2

η∞
2

Pr f (ξ)θ ′(ξ) = 0 (16)

f (−1) = 0, f ′(−1) = η∞
2 (±γ1),

g(−1) = 0, θ(−1) = 1
f ′(1) = η∞

2 (1− γ1), g(1) = 0, and
θ(1) = 0




Thus by applying the ChFD approximation to Eqs. (1
(16), we obtain the following Chebyshev finite differen
equations
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(a)

(b)

Fig. 3. (a) Effect of micropolar parameter∆ on velocity distributiong for
parallel moving surface. (b) Effect of micropolar parameter∆ on velocity
distributiong for reverse moving surface.

(1+ ∆)

L∑
j=0

d
(3)
k,jf (ξj )

− 1

θ(ξk) − θr

(
L∑

j=0

d
(1)
k,j θ(ξj )

)(
L∑

j=0

d
(2)
k,jf (ξj )

)

+
(

η∞
2

)2

∆

L∑
j=0

d
(1)
k,jg(ξj )

+ 1

2

η∞
2

f (ξk)

L∑
j=0

d
(2)
k,jf (ξj )

− 1

kp

(
η∞
2

)2 L∑
j=0

d
(1)
k,jf (ξj ) = 0

k = 2,3, . . . ,L − 1
(a)

(b)

Fig. 4. (a) Effect of the velocity ratioγ1 on velocity distributionf ′ for
parallel moving surface. (b) Effect of the velocity ratioγ1 on velocity
distributionf ′ for reverse moving surface.

Fig. 5. Effect of the velocity ratioγ1 on angular velocity distributiong for
parallel moving surface.
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(a)

(b)

Fig. 6. (a) Effect of the velocity ratioγ1 on temperature distributionθ for
parallel moving surface. (b) Effect of the velocity ratioγ1 on temperature
distributionθ for reverse moving surface.

λ

L∑
j=0

d
(2)
k,j g(ξj ) − B∆

(
2

(
η∞
2

)2

g(ξk) +
L∑

j=0

d
(2)
k,jf (ξj )

)

+ 1

2

η∞
2

(
g(ξk)

L∑
j=0

d
(1)
k,j f (ξj ) + f (ξk)

L∑
j=0

d
(1)
k,j g(ξj )

)

= 0 k = 1,2, . . . ,L − 1

3F

L∑
j=0

d
(2)
k,j θ(ξj ) + 3F

(
S

1+ Sθ(ξk)

)(
L∑

j=0

d
(1)
k,j θ(ξj )

)2

+ 3F

2

(
η∞
2

)
Pr f (ξk)

L∑
j=0

d
(1)
k,j θ(ξj )

+ 4

[(
1+ rθ(ξk)

)3
L∑

j=0

d
(2)
k,j θ(ξj ) + 3r

(
1+ rθ(ξk)

)2

×
(

L∑
d

(1)
k,j θ(ξj )

)2]
= 0 k = 1,2, . . . ,L − 1
j=0
(a)

(b)

Fig. 7. (a) Effect of porous parameterkp on velocity distributionf ′ for
parallel moving surface. (b) Effect of porous parameterkp on velocity
distributionf ′ for reverse moving surface.

Fig. 8. Effect of porous parameterkp on velocity distributiong for parallel
moving surface.
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(a)

(b)

Fig. 9. (a) Effect of porous parameterkp on temperature distributionθ for
parallel moving surface. (b) Effect of porous parameterkp on temperature
distributionθ for reverse moving surface.

The ChFD approximation for the derivative boundary c
ditionsf ′(−1) = η∞

2 (±γ1), f ′(1) = η∞
2 (1− γ1) are formed

by

L∑
j=0

d
(1)
0,jf (ξj ) = η∞

2
(±γ1)

L∑
j=0

d
(1)
N,j f (ξj ) = η∞

2
(1− γ1)

The system of nonlinear equations which contains 3L − 2
equations for the unknownf (ξj ), i = 1,2,3, . . . ,L and
g(ξi), θ(ξi), i = 1,2,3, . . . ,L − 1 is solved by Newton
method.

4. Results and discussion

To study the behavior of the velocity, the angular veloc
and the temperature profiles, curves are drawn for var
values of the parameters that describe the flow in the ca
 f

(a)

(b)

Fig. 10. (a) Effect of viscosity parameterθr on temperature distribution
θ for parallel moving surface. (b) Effect of viscosity parameterθr on
temperature distributionθ for reverse moving surface.

Fig. 11. Effect of variable conductivity parameterS on temperature
distributionθ for parallel moving surface.

a plane surface moving in parallel to the free stream and
case of a plane surface moving in the opposite directio
the free stream atη∞ = 10,λ = 0.5,B = 0.1 andPr = 0.72.
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Fig. 12. Effect of the radiation parameterF on velocity distributionf ′ for
parallel moving surface.

Fig. 13. Effect of the radiation parameterF on velocity distributiong for
parallel moving surface.

In the first case (the case of a plane surface movin
parallel to the free stream):
Figs. 1–3 show the effect of the micropolar parameter∆ on
the velocity, the angular velocity, the temperature and di
butions, respectively. As shown, the velocity and the ang
velocity are increasing with increasing∆, but the tempera
ture decreases as∆ increases. Figs. 4(a)–6(a) represent
effect of the velocity ratioγ1 on the velocity, the angula
velocity and the temperature distributions, respectively.
shown, the velocity near the boundary layer and the an
lar velocity are increasing with increasingγ1, but the veloc-
ity far away the boundary layer and the temperature are
creasing with increasingγ1. Figs. 7(a)–9(a) display resul
for the velocity, the angular velocity and temperature d
tribution, respectively. As shown, the velocities are incre
ing with increasing the dimensionless porous medium
rameterkp and the temperature decreases askp increases
The effect of the dimensionless porous medium param
kp becomes smaller askp increases. Physically, this resu
can be achieved when the holes of the porous medium
(a)

(b)

Fig. 14. (a) Effect of the radiation parameterF on temperature distribution
θ for parallel moving surface. (b) Effect of the radiation parameterF on
temperature distributionθ for reverse moving surface.

very large so that the resistance of the medium may be
glected. Fig. 10(a) shows the effect of the variable visc
ity parameterθr on the temperature distribution. As show
the temperature is decreasing with increasingθr . Fig. 11
shows that, the dimensionless temperature distribution
creases as the thermal conductivity parameterS increases
Also, Figs. 12(a)–14(a) give the effects of the radiation pa
meterF on the velocity, the angular velocity and the temp
ature distributions, respectively. This figures indicate that, a
of this quantities decrease asF increases. We notice tha
the effect of the radiation parameterF on the temperatur
distribution is weak. Also, in this case Table 1(a) represe
values of|f ′′(0)|, |g′(0)| and−θ ′(0) for various values o
the variable viscosity parameterθr , the variable conductivity
parameterS, the radiation parameterF and the dimension
less porous medium parameterkp. It is clear that,|f ′′(0)|
and |g′(0)| increase and−θ ′(0) decreases asθr increases
whereas,|f ′′(0)| and|g′(0)| decrease and−θ ′(0) increases
askp increases.|f ′′(0)|, |g′(0)| and−θ ′(0) decrease asS in-
creases whereas, they increase asF increases, i.e., the var
able viscosity and the permeability have the opposite ef
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iscosity

he
Table 1(a)
Represents values of|f ′′(0)|, |g′(0)| and−θ ′(0) in the case of a plane surface moving in parallel to the free stream for various values of the variable v
parameterθr , the variable conductivity parameterS, the radiation parameterF and the dimensionless porous medium parameterkp

θr S F kp |f ′′(0)| |g′(0)| −θ ′(0)

0.01 0.5 1 2 0.47338229606400317 0.07793950770135853 0.13226778895630242
0.05 0.5 1 2 0.47930686670165185 0.07807090952312165 0.1316960566500151
0.1 0.5 1 2 0.487236721620493 0.07825582862548498 0.13089647145859254

0.01 0.1 1 2 0.4764185916993324 0.07799009077968118 0.13759979138731276
0.01 0.5 1 2 0.47338229606400317 0.07793950770135853 0.13226778895630242
0.01 1 1 2 0.4708391400737787 0.07789431997967056 0.12806556866182123
0.01 2 1 2 0.4677348004078067 0.07783556116907821 0.12321672726038124
0.01 5 1 2 0.46351583137573016 0.0777525635244179 0.11732194154267259

0.01 0.5 0.1 2 0.4396193008993214 0.07730829272371825 0.07786367898585508
0.01 0.5 0.5 2 0.4562858422188947 0.07762283844631164 0.1052183341681238
0.01 0.5 1 2 0.47338229606400317 0.07793950770135853 0.13226778895630242
0.01 0.5 2 2 0.49711582063455806 0.0783538147142093 0.16782884347140253
0.01 0.5 5 2 0.5284939897791537 0.07886219232255452 0.21405332342869604

0.01 0.5 1 0.01 2.665164590790144 0.08962427991128695 0.08851591654858833
0.01 0.5 1 0.05 1.2648431922598353 0.08458101323846938 0.102751620022091
0.01 0.5 1 0.1 0.949489485091824 0.08258760215996477 0.11039572363162209
0.01 0.5 1 0.2 0.7407291863246838 0.08088839795924332 0.11781697390763912
0.01 0.5 1 0.5 0.5778964740399033 0.07923700246426744 0.12572266381200065

Table 1(b)
Represents values of|f ′′(0)|, |g′(0)| and−θ ′(0) in the case of a plane surface moving in the opposite direction to the free stream for various values of t
variable viscosity parameterθr , the variable conductivity parameterS, the radiation parameterF and the dimensionless porous medium parameterkp

θr S F kp |f ′′(0)| |g′(0)| −θ ′(0)

0.01 0.5 1 2 0.21121222359506647 0.003635970432837052 0.006738528835901418
0.02 0.5 1 2 0.006738528835901418 0.003361376170207813 0.006695365449320134
0.03 0.5 1 2 0.633910478966136 0.002773702328285639 0.0065858905023089605

0.01 0.1 1 2 0.20893912874189483 0.00364372311020349 0.006963680906851406
0.01 0.5 1 2 0.21121222359506647 0.003635970432837052 0.006738528835901418
0.01 1 1 2 0.2156213657814442 0.0036239967257961103 0.006559797294615555
0.01 2 1 2 0.22785528680682546 0.0035941873668730263 0.006347825389555584
0.01 5 1 2 0.27645471931706195 0.003482530994884744 0.0060414936133905365

0.01 0.5 1 2 0.21121222359506647 0.003635970432837052 0.006738528835901418
0.01 0.5 2 2 0.22041882177754815 0.0035503391384754265 0.001098154763181411
0.01 0.5 3 2 0.22978197975697184 0.003519679086656167 0.0002945403569790575
0.01 0.5 4 2 0.23648800179387763 0.003502336662478776 0.00010924830786173678
0.01 0.5 5 2 0.2413897724638082 0.0034905934205445516 0.00004895275053760917

0.01 0.5 1 0.01 2.606127326046759 0.08037696312328567 0.06089099668832979
0.01 0.5 1 0.05 1.1395869394277838 0.057063661658692075 0.0482208131150204
0.01 0.5 1 0.1 0.7751648485172745 0.043730871947144284 0.04001101380355919
0.01 0.5 1 0.2 0.5027361222012814 0.03024781868543334 0.029613312541030924
0.01 0.5 1 0.5 0.2127718730383549 0.015231294262487236 0.015387674057896438
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on the shear stress, couple stress and Nusselt number.
the variable conductivity and the radiation have the oppo
effect on the same quantities.

In the second case (the case of a plane surface movi
the opposite direction to the free stream):
The effect of the micropolar parameter∆ on the angular ve
locity distribution is investigated in Fig. 2(b). The angu
velocity is decreasing with increasing∆. Figs. 4(b) and 6(b
represent the effect of the velocity ratioγ1 on the velocity
and the temperature distributions. As shown, the velocit
decreasing withincreasingγ1 and the temperature is increa
,ing with increasingγ1. Figs. 7(b) and 9(b) display resul
for the velocity and temperature distributions. As show
the velocity is decreasing with increasing the dimension
porous medium parameterkp, whereas the temperature i
creases askp increases. Fig. 10(b) shows the effect of
variable viscosity parameterθr on and the temperature di
tribution. As shown, the temperature is decreasing with
creasingθr . Finally, Fig. 14(b) gives the effect of the radi
tion parameterF on the temperature distribution. This figu
indicate that, with increasingF the temperature distributio
increasing. Also, in this case Table 1(b) represents value
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Table 2(a)
Represents comparison between the results of the author and the results of the Mansour et al. [2] in the case of a plane surface moving in parallel to tree
stream.η∞ = 8, λ = 0.5, B = 0.1, Pr = 0.7, S = 0.0, θr → ∞, kp → ∞, F → ∞
∆ γ1 f ′′(0) −θ ′(0) g′(0)

1.5 0.0 (0.18486)0.1859854550 (0.25948)0.2600519545 (−0.09977) − 0.1002543536
1.5 0.1 (0.15960)0.1575951510 (0.27700)0.2769988251 (−0.08617) − 0.0861692688
1.5 0.2 (0.12417)0.1241740075 (0.29261)0.2926110385 (−0.06859) − 0.0685907371
1.5 0.3 (0.08644)0.0864358163 (0.30720)0.3071955606 (−0.04809) − 0.0480917773
1.5 0.4 (0.04491)0.0449081558 (0.32096)0.3209600529 (−0.02511) − 0.0251115247
1.5 0.5 (0.0) − 3.97904× 10−13 (0.33405)0.3340523047 (0.0) − 1.3742× 10−13

1.5 0.6 (−0.04796) − 0.04796007 (0.34658)0.3465816316 (0.02696)0.026955094391
1.5 0.7 (−0.09870) − 0.09870078 (0.35863)0.3586313691 (0.05551)0.055511148221
1.5 0.8 (−0.15199) − 0.15199341 (0.37027)0.3702665906 (0.08546)0.085458951645
1.5 0.9 (−0.20764) − 0.20764214 (0.38154)0.3815390850 (0.11661)0.116614447718
1.5 1.0 (−0.26548) − 0.26547756 (0.39249)0.3924906689 (0.14881)0.148812815242

Table 2(b)
Represents comparison between the results of the author and the results of the Mansour et al. [2] in the case of a surface moving in the opposite dirn to
the free stream.η∞ = 8, λ = 0.5, B = 0.1, Pr = 0.7, S = 0.0, θr → ∞, kp → ∞, F → ∞
∆ γ1 f ′′(0) −θ ′(0) −g′(0)

1.5 0.00 (0.18486)0.1859854550 (0.25948)0.2600519545 (0.09977)0.1002543
1.5 0.05 (0.16840)0.1701452192 (0.23662)0.2376448928 (0.08939)0.0901751
1.5 0.10 (0.15016)0.1529534191 (0.21097)0.2129178603 (0.07768)0.0789956
1.5 0.15 (0.12923)0.1340084896 (0.18105)0.1850833210 (0.06421)0.0665458

5.0 0.00 (0.10651)0.1126611656 (0.23306)0.2374666883 (0.10730)0.1137937
5.0 0.05 (0.09811)0.1055078665 (0.20916)0.2153036247 (0.09578)0.1034199
5.0 0.10 (0.08913)0.0981517931 (0.18283)0.1916803245 (0.08415)0.0932065
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|f ′′(0)|, |g′(0)| and−θ ′(0) for various values of the variabl
viscosity parameterθr , the variable conductivity paramet
S, the radiation parameterF and the dimensionless poro
medium parameterkp. It is clear that, with increasingθr , S

andF , |g′(0)| and−θ ′(0) decrease and|f ′′(0)| increases
whereas with increasingkp, |f ′′(0)|, |g′(0)| and−θ ′(0) de-
crease, i.e., the variable viscosity, the variable conduct
and the radiation have the same effect on the shear s
couple stress and Nusselt number.

Finally, Table 2(a) represents comparison between th
results of the author and the results of Mansour et al.
in the case of a plane surface moving in parallel to
free stream. Table 2(b) represents comparison between th
results of the author and the results of Mansour et al.
in the case of a surface moving in the opposite directio
the free stream. In these tables, the given number betw
brackets refer to the results of Mansour et al. [2] a
the given numbers without brackets refer to the pres
values.

5. Conclusions

This paper studied the effects of variable viscos
variable thermal conductivity and radiation on heat tran
from moving surfaces in a micropolar fluid through a poro
medium. Two cases are considered, one corresponding
plane surface moving in parallel with the free stream and
other, a surface moving in the opposite direction to the
,

stream. The fluid viscosity is assumed to vary as an inv
linear function of temperature and the thermal conducti
is assumed to vary as a linear function of temperat
The governing fundamental equations are approximate
a system of nonlinear ordinary differential equations
similarity transformation and are solved numerically
using Chebyshev finite difference method (ChFD), the sh
stress, couple stress and Nusselt number as well as
details of velocity and temperature fields are presented
various values of parameters of the problem, e.g., vari
viscosity, variable thermal conductivity, radiation, poro
velocity ratio and micropolar parameters. The numer
results indicate that (in the first case) the velocity and
angular velocity increase as the porous parameter incre
but they decrease as the radiation parameter incre
The temperature increases also as the variable conduc
parameter increases but it decreases with permeab
variable viscosity and radiation increasing. The varia
viscosity and the permeability have the opposite effect
the shear stress, couple stress and Nusselt number.
the variable conductivity and the radiation have the oppo
effect on the same quantities. Also (in the second c
the velocity decreases as the porous parameter incre
The temperature increases as the porous and the rad
parameters increase but it decreases as the variable viscos
increases. The variable viscosity, the variable conduct
and the radiation have the same effect on the shear s
couple stress and Nusselt number.



E.M.E. Elbarbary, N.S. Elgazery / International Journal of Thermal Sciences 43 (2004) 889–899 899

a
e of

la,
.

nu-

flat
ies,

r-
n
ppl.

e-
free

of
,

1–

HD
able

s. 79

ee
ble

J.

ua,

sis,

ds:
pl.

s

of
)

ial

xi-
39

hod
to-
eat

tion

ery,
lar
ut.,
References

[1] H.A.M. El-Arabawy, Effect of suction/injection on the flow of
micropolar fluid past a continuously moving plate in the presenc
radiation, Internat. J. Heat Mass Transfer 46 (2003) 1471–1477.

[2] M.A. Mansour, A.A. Mohammadein, S.M.M. El-Kabeir, R.S.R. Gor
Heat transfer from moving surfacesin a micropolar fluid, Canad. J
Phys. 77 (1999) 463–471.

[3] M.A. Seddeek, Flow of a magneto-micropolar fluid past a conti
ously moving plate, Phys. Lett. A 306 (2003) 255–257.

[4] I.A. Hassanien, Flow and heat transfer on continous stretching
surface moving in a parallel free steam with variable propert
Z. Angew. Math. Mech. 79 (11) (1999) 786–792.

[5] M.A. Abd El-Naby, E.M.E. Elbarbary, N.Y. Abdelazem, Finite diffe
ence solution of radiation effects on MHD unsteady free-convectio
flow over vertical plate with variable surface temperature, J. A
Math. 2 (2003) 65–86.

[6] A.Y. Ghaly, E.M.E. Elbarbary, Radiation effect on MHD fre
convection flow of a gas at a stretching surface with a uniform
stream, J. Appl. Math. 2 (2002) 93–103.

[7] Y.J. Kim, A.G. Fedorov, Transient mixed radiative convection flow
a micropolar fluid past a moving semi-infinite vertical porous plate
Internat. J. Heat Mass Transfer 46 (2003) 1751–1758.

[8] A.C. Eringen, Theory of micropolar fluids, Math. Mech. 16 (1966)
18.

[9] M.A. Seddeek, Thermal radiation and buoyancy effects on M
free convective heat generating flow over an accelerating perme
surface with temperature-dependent viscosity, Canad. J. Phy
(2001) 725–732.

[10] E.M. Aboeldahab, M.S. El Gendy, Radiation effect on MHD fr
convective flow of a gas past a semi-infinite vertical plate with varia
thermophysical properties for high-temperature differences, Canad.
Phys. 80 (2002) 1609–1619.

[11] J.C. Slattery, Momentum, Energy and Mass Transfer in Contin
McGraw-Hill, New York, 1972.

[12] L. Fox, I.B. Parker, Chebyshev Polynomials in Numerical Analy
Clarendon Press, Oxford, 1968.

[13] D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Metho
Theory and Applications, in: CBMS–NSF Regional Conf. Ser. Ap
Math., vol. 26, SIAM, Philadelphia, PA, 1977.

[14] C. Canuto, M.Y. Hussaini, A. Quarterini, T.A. Zang, Spectral Method
in Fluid Dynamics, Springer, Berlin, 1988.

[15] H. Nasr, I.A. Hassanien, H.M. El-Hawary, Chebyshev solution
laminar boundary layer flow, Internat. J. Comput. Math. 33 (1990
127–132.

[16] R.G. Voigt, D. Gottlieb, M.Y. Hussaini, Spectral Methods for Part
Differential Equations, SIAM, Philadelphia, PA, 1984.

[17] E.M.E. Elbarbary, M. El-Kady, Chebyshev finite difference appro
mation for the boundary value problems, Appl. Math. Comput. 1
(2003) 513–523.

[18] E.M.E. Elbarbary, N.S. Elgazery, Chebyshev finite difference met
for the effects of radiation and variable viscosity on magne
micropolar fluid flow through a porous medium, Internat. Comm. H
Transfer 31 (3) (2004) 409–419.

[19] E.M.E. Elbarbary, Chebyshev finite difference method for the solu
of boundary-layer equations, Appl. Math. Comput., in press.

[20] N.T. Eldabe, E.F. Elshehawey, E.M.E. Elbarbary, N.S. Elgaz
Chebyshev finite difference method for MHD flow of a micropo
fluid past a stretching sheet with heat transfer, Appl. Math. Comp
in press.


